Skip to main content
Contents
Embed
Dark Mode Prev Up Next
\(\require{cancel}\require{mathtools}\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\lambd}{\lambda}
\newcommand{\rrefarrow}{\xrightarrow{\mathrm{rref}}}
\newcommand{\tr}[1]{\mathrm{tr}#1}
\newcommand{\colvector}[1]{\begin{bmatrix}#1\end{bmatrix}}
\newcommand{\complex}[1]{\mathbb{C}^{#1}}
\newcommand{\spn}[1]{\left\langle#1\right\rangle}
\newcommand{\set}[1]{\left\{#1\right\}}
\newcommand{\leading}[1]{\boxed{#1}}
\newcommand{\nullity}[1]{n\left(#1\right)}
\newcommand{\dimension}[1]{\dim\left(#1\right)}
\newcommand{\nsp}[1]{\mathcal{N}\!\left(#1\right)}
\newcommand{\rank}[1]{r\left(#1\right)}
\newcommand{\csp}[1]{\mathcal{C}\!\left(#1\right)}
\newcommand{\rsp}[1]{\mathcal{R}\!\left(#1\right)}
\newcommand{\lns}[1]{\mathcal{L}\!\left(#1\right)}
\newcommand{\linearsystem}[2]{\mathcal{LS}\!\left(#1,\,#2\right)}
\newcommand{\vect}[1]{\mathbf{#1}}
\newcommand{\lteval}[2]{#1\left(#2\right)}
\newcommand{\ltdefn}[3]{#1\colon #2\rightarrow#3}
\newcommand{\zerovector}{\vect{0}}
\newcommand{\homosystem}[1]{\linearsystem{#1}{\zerovector}}
\newcommand{\eigenspace}[2]{\mathcal{E}_{#1}\left(#2\right)}
\newcommand{\matrixrep}[3]{M^{#1}_{#2,#3}}
\newcommand{\vectrepname}[1]{\rho_{#1}}
\newcommand{\vectrep}[2]{\lteval{\vectrepname{#1}}{#2}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Worksheet Participate
Objectives
Calculate the inverse of a
\(2\times 2\) matrix or say why an inverse doesnβt exist.
Use the inverse and matrix multiplication to solve a 2-variable system of linear equations.
1.
Let
\(A=\begin{bmatrix} 2 \amp 1 \\ 7 \amp 4 \end{bmatrix}\text{.}\)
(a)
Calculate
\(A^{-1}\text{.}\)
(b)
Calculate both
\(AA^{-1}\) and
\(A^{-1}A\) using matrix multiplication. What matrix do you get?
(c)
Whatβs the size of the matrix product
\(A^{-1}\begin{bmatrix} 1 \\ 3 \end{bmatrix}\text{?}\) Is the matrix product
\(\begin{bmatrix} 1 \\ 3 \end{bmatrix}A^{-1}\) defined? Why or why not?
(d)
Use \(A^{-1}\) to solve the system
\begin{align*}
2x_1 + x_2 \amp = 1\\
7x_1+4x_2 \amp = 3
\end{align*}
(e)
Use \(A^{-1}\) to solve the system
\begin{align*}
2x_1 + x_2 \amp = 4\\
7x_1+4x_2 \amp = 14.5
\end{align*}
2.
Let
\(D=\begin{bmatrix} 4 \amp -1 \\ -2 \amp 0 \end{bmatrix}\) and
\(M=\begin{bmatrix} 1 \amp -2 \\ -1 \amp 2 \end{bmatrix}\text{.}\)
(a)
Calculate
\(D^{-1}\text{.}\)
(b)
Say why we canβt calculate
\(M^{-1}\text{.}\)
(c)
Use matrix multiplication and the matrix
\(A\) defined in
ExerciseΒ 1 to calculate both
\(AD\) and
\((AD)^{-1}\text{.}\)
(d)
Use matrix multiplication and the matrix
\(A\) defined in
ExerciseΒ 1 to calculate both
\(A^{-1}D^{-1}\) and
\(D^{-1}A^{-1}\text{.}\) What do you notice?