Skip to main content

Worksheet Participate

1.

Let \(A=\begin{bmatrix} 2 \amp 1 \\ 7 \amp 4 \end{bmatrix}\text{.}\)
(b)
Calculate both \(AA^{-1}\) and \(A^{-1}A\) using matrix multiplication. What matrix do you get?
(c)
What’s the size of the matrix product \(A^{-1}\begin{bmatrix} 1 \\ 3 \end{bmatrix}\text{?}\) Is the matrix product \(\begin{bmatrix} 1 \\ 3 \end{bmatrix}A^{-1}\) defined? Why or why not?
(d)
Use \(A^{-1}\) to solve the system
\begin{align*} 2x_1 + x_2 \amp = 1\\ 7x_1+4x_2 \amp = 3 \end{align*}
(e)
Use \(A^{-1}\) to solve the system
\begin{align*} 2x_1 + x_2 \amp = 4\\ 7x_1+4x_2 \amp = 14.5 \end{align*}

2.

Let \(D=\begin{bmatrix} 4 \amp -1 \\ -2 \amp 0 \end{bmatrix}\) and \(M=\begin{bmatrix} 1 \amp -2 \\ -1 \amp 2 \end{bmatrix}\text{.}\)
(d)
Use matrix multiplication and the matrix \(A\) defined in ExerciseΒ 1 to calculate both \(A^{-1}D^{-1}\) and \(D^{-1}A^{-1}\text{.}\) What do you notice?