Skip to main content
Matrix Calculations
A subspace of linear algebra
Chrissy Safranski
Contents
Search Book
close
Search Results:
No results.
Embed
Copy the code below to embed this page in your own website or LMS page.
Copy
Dark Mode
Prev
Up
Next
\(\require{cancel}\require{mathtools}\newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\Q}{\mathbb Q} \newcommand{\R}{\mathbb R} \newcommand{\lambd}{\lambda} \newcommand{\rrefarrow}{\xrightarrow{\mathrm{rref}}} \newcommand{\tr}[1]{\mathrm{tr}#1} \newcommand{\colvector}[1]{\begin{bmatrix}#1\end{bmatrix}} \newcommand{\complex}[1]{\mathbb{C}^{#1}} \newcommand{\spn}[1]{\left\langle#1\right\rangle} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\leading}[1]{\boxed{#1}} \newcommand{\nullity}[1]{n\left(#1\right)} \newcommand{\dimension}[1]{\dim\left(#1\right)} \newcommand{\nsp}[1]{\mathcal{N}\!\left(#1\right)} \newcommand{\rank}[1]{r\left(#1\right)} \newcommand{\csp}[1]{\mathcal{C}\!\left(#1\right)} \newcommand{\rsp}[1]{\mathcal{R}\!\left(#1\right)} \newcommand{\lns}[1]{\mathcal{L}\!\left(#1\right)} \newcommand{\linearsystem}[2]{\mathcal{LS}\!\left(#1,\,#2\right)} \newcommand{\vect}[1]{\mathbf{#1}} \newcommand{\lteval}[2]{#1\left(#2\right)} \newcommand{\ltdefn}[3]{#1\colon #2\rightarrow#3} \newcommand{\zerovector}{\vect{0}} \newcommand{\homosystem}[1]{\linearsystem{#1}{\zerovector}} \newcommand{\eigenspace}[2]{\mathcal{E}_{#1}\left(#2\right)} \newcommand{\matrixrep}[3]{M^{#1}_{#2,#3}} \newcommand{\vectrepname}[1]{\rho_{#1}} \newcommand{\vectrep}[2]{\lteval{\vectrepname{#1}}{#2}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9} \newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}} \)
Front Matter
Colophon
Preface
Acknowledgements
1
Linear Equations, Augmented Matrices
1.1
Linear Equations and Substitution
Participate
Practice
Additional Practice
1.2
Matrices and Elimination
Prepare
Reading Questions
Participate
Practice
Additional Practice
1.3
Row Operations
Prepare
Reading Questions
Participate
Practice
Additional Practice
1.4
Reduced Row Echelon Form
Prepare
Reading Questions
Participate
Practice
Additional Practice
1.5
Consistent and Inconsistent Systems
Prepare
Types of solutions
Determining Consistency
More on Infinite Solutions
Reading Questions
Participate
Practice
Additional Practice
1.6
Problem Solving with Linear Systems
Prepare
Reading Questions
Participate
Additional Practice
2
Matrices as Mathematical Objects
2.1
Introduction to Matrix Arithmetic
Prepare
Reading Questions
Participate
Practice
Additional Practice
2.2
Matrix Multiplication
Prepare
Reading Questions
Participate
Practice
Additional Practice
2.3
Matrix Inverses and Two Variable Systems
Prepare
Reading Questions
Participate
Practice
Additional Practice
Backmatter
Colophon
Colophon
©2024–2025 Chrissy Safranski
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit
CreativeCommons.org
🔗