Skip to main content

Section 2.1 Testing things

a number line

Activity 2.1.1. Testing Interactive and Response together.

Some text.
Figure 2.1.2. Solutions to the equation \(15x+6y=15\)

Activity 2.1.3. Testing tabs and prefigure.

testing the intro

(a)

With annotations
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output

(b)

With annotations and dimensions changed to (200,200).
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output

(c)

Without annotations
Graph of two lines and their point of intersection

Worksheet Participate

1. Why rref?

Write the associated system of linear equations for each of the matrices below.
\(\begin{bmatrix} 1 \amp 2 \amp 3 \amp 4 \\ 2 \amp -1 \amp 3 \amp 0 \\ 3 \amp 1 \amp 5 \amp 3 \end{bmatrix}\)
\(\begin{bmatrix} 1 \amp 0 \amp 0 \amp 4 \\ 0 \amp 1 \amp 0 \amp 0 \\ 0 \amp 0 \amp 1 \amp 3 \end{bmatrix}\)
Which system of equations would you prefer to be asked to solve on an exam?

2. Gauss-Jordan algorithm.

Use Gauss-Jordan elimination to put each of the matrices below into reduced row echelon form.
a.
\begin{equation*} \begin{bmatrix} 2 \amp 5 \amp -3 \\ 5 \amp -5 \amp -25 \end{bmatrix} \end{equation*}
b.
\begin{equation*} \begin{bmatrix} 2 \amp 5 \amp -3 \\ 2 \amp 5 \amp 1 \end{bmatrix} \end{equation*}
c.
\begin{equation*} \begin{bmatrix} 1\amp 2 \amp 3 \amp 5 \\ 0 \amp 4 \amp 5 \amp 7 \\ 1 \amp 6 \amp 9 \amp 11 \end{bmatrix} \end{equation*}

3. Form of matrices.

For each of the following matrices, say if it is in reduced row echelon form. If it isn’t, say whether it is in row echelon form or if it’s in neither form.
a.
\(\left[\begin{array}{ccc} 1\amp 0 \amp -3\\0\amp 1 \amp 1\\ \end{array} \right]\)
b.
\(\left[\begin{array}{cc} 1\amp 2\\0\amp 0\\ \end{array} \right]\)
c.
\(\left[\begin{array}{ccc} 1\amp 1 \amp -3\\0\amp 0 \amp 1\\ \end{array} \right]\)
d.
\(\begin{bmatrix} 1\amp 0 \amp -3\\0\amp 0 \amp 0\\ 0 \amp 1 \amp 3 \end{bmatrix}\)
e.
\(\begin{bmatrix} 1\amp 0 \amp 0 \amp 4 \amp 5 \\0\amp 0 \amp 1 \amp 2 \amp 7 \\ 0 \amp 1 \amp 0 \amp 3 \amp 11 \end{bmatrix}\)
f.
\(\begin{bmatrix} 1\amp 0 \amp 0 \amp 5 \\0\amp 4 \amp 0 \amp 7 \\ 0 \amp 0 \amp 1 \amp 11 \end{bmatrix}\)
g.
\(\begin{bmatrix} 1\amp 0 \amp 0 \amp 5 \\0\amp 1 \amp 0 \amp 7 \\ 0 \amp 0 \amp 1 \amp 11 \end{bmatrix}\)
h.
\(\begin{bmatrix} 1\amp 0 \amp 3 \amp 0 \amp 6 \\0\amp 1 \amp -1 \amp 0 \amp -23 \\ 0 \amp 0 \amp 0 \amp 1 \amp 11 \end{bmatrix}\)

4.

Write down the associated linear system of equations for part c, part g and part h. What observations and questions do you have about these systems?

Activity 2.1.4. Non 1-1 Matching Problem, Function Types.

Activity 2.1.5. How a matrix is indexed, old markup.

In the matrix
\begin{equation*} A=\begin{bmatrix} 2 \amp -1 \amp 3 \amp 5 \\ 0 \amp 3\amp 6\amp -3 \\ 4 \amp -2 \amp 7 \amp 5 \end{bmatrix} \end{equation*}
what is \(a_{23}\text{?}\)

Activity 2.1.6. How a matrix is indexed, new markup.

Activity 2.1.7. Solve a fruit puzzle, image child of paragraph.

Activity 2.1.8. Solve a fruit puzzle, image child of figure.

Activity 2.1.10. Solve a fruit puzzle, image child of statement.

Activity 2.1.11. MultiAnswer, and the logical “and”.

This problem uses a MultiAnswer, where multiple blanks are needed for the right answer. Since the checking of these problems often involves logic, we also demonstrate how to replace the perl “and” in the pretext source, since ampersands are reserved characters.
Enter two numbers that are equal, and the first one must be a 2: \(=\)