Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\lambd}{\lambda}
\newcommand{\rrefarrow}{\xrightarrow{\mathrm{rref}}}
\newcommand{\tr}[1]{\mathrm{tr}#1}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 2.1 Testing things
Activity 2.1.1 . Testing Interactive and Response together.
Some text.
Figure 2.1.2. Solutions to the equation \(15x+6y=15\)
Activity 2.1.3 . Testing tabs and prefigure.
(a)
With annotations
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(b)
With annotations and dimensions changed to (200,200).
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Worksheet Participate
Objectives
1. Why rref?
Write the associated system of linear equations for each of the matrices below.
\(\begin{bmatrix} 1 \amp 2 \amp 3 \amp 4 \\ 2 \amp -1 \amp 3 \amp 0 \\ 3 \amp 1 \amp 5 \amp 3 \end{bmatrix}\)
\(\begin{bmatrix} 1 \amp 0 \amp 0 \amp 4 \\ 0 \amp 1 \amp 0 \amp 0 \\ 0 \amp 0 \amp 1 \amp 3 \end{bmatrix}\)
Which system of equations would you prefer to be asked to solve on an exam?
2. Gauss-Jordan algorithm.
Use Gauss-Jordan elimination to put each of the matrices below into reduced row echelon form.
a.
\begin{equation*}
\begin{bmatrix} 2 \amp 5 \amp -3 \\ 5 \amp -5 \amp -25 \end{bmatrix}
\end{equation*}
b.
\begin{equation*}
\begin{bmatrix} 2 \amp 5 \amp -3 \\ 2 \amp 5 \amp 1 \end{bmatrix}
\end{equation*}
c.
\begin{equation*}
\begin{bmatrix} 1\amp 2 \amp 3 \amp 5 \\ 0 \amp 4 \amp 5 \amp 7 \\ 1 \amp 6 \amp 9 \amp 11 \end{bmatrix}
\end{equation*}
3. Form of matrices.
For each of the following matrices, say if it is in reduced row echelon form. If it isn’t, say whether it is in row echelon form or if it’s in neither form.
a.
\(\left[\begin{array}{ccc} 1\amp 0 \amp -3\\0\amp 1 \amp 1\\ \end{array} \right]\)
b.
\(\left[\begin{array}{cc} 1\amp 2\\0\amp 0\\ \end{array} \right]\)
c.
\(\left[\begin{array}{ccc} 1\amp 1 \amp -3\\0\amp 0 \amp 1\\ \end{array} \right]\)
d.
\(\begin{bmatrix} 1\amp 0 \amp -3\\0\amp 0 \amp 0\\ 0 \amp 1 \amp 3 \end{bmatrix}\)
e.
\(\begin{bmatrix} 1\amp 0 \amp 0 \amp 4 \amp 5 \\0\amp 0 \amp 1 \amp 2 \amp 7 \\ 0 \amp 1 \amp 0 \amp 3 \amp 11 \end{bmatrix}\)
f.
\(\begin{bmatrix} 1\amp 0 \amp 0 \amp 5 \\0\amp 4 \amp 0 \amp 7 \\ 0 \amp 0 \amp 1 \amp 11 \end{bmatrix}\)
g.
\(\begin{bmatrix} 1\amp 0 \amp 0 \amp 5 \\0\amp 1 \amp 0 \amp 7 \\ 0 \amp 0 \amp 1 \amp 11 \end{bmatrix}\)
h.
\(\begin{bmatrix} 1\amp 0 \amp 3 \amp 0 \amp 6 \\0\amp 1 \amp -1 \amp 0 \amp -23 \\ 0 \amp 0 \amp 0 \amp 1 \amp 11 \end{bmatrix}\)
4.
Write down the associated linear system of equations for
part c ,
part g and
part h . What observations and questions do you have about these systems?
Activity 2.1.4 . Non 1-1 Matching Problem, Function Types.
Activity 2.1.5 . How a matrix is indexed, old markup.
In the matrix
\begin{equation*}
A=\begin{bmatrix} 2 \amp -1 \amp 3 \amp 5 \\ 0 \amp 3\amp 6\amp -3 \\ 4 \amp -2 \amp 7 \amp 5 \end{bmatrix}
\end{equation*}
what is \(a_{23}\text{?}\)
Activity 2.1.6 . How a matrix is indexed, new markup.
Activity 2.1.7 . Solve a fruit puzzle, image child of paragraph.
Activity 2.1.8 . Solve a fruit puzzle, image child of figure.
Activity 2.1.10 . Solve a fruit puzzle, image child of statement.
Activity 2.1.11 . MultiAnswer, and the logical “and”.
This problem uses a MultiAnswer, where multiple blanks are needed for the right answer. Since the checking of these problems often involves logic, we also demonstrate how to replace the perl “and” in the pretext source, since ampersands are reserved characters.